Sucrose Gap
   HOME

TheInfoList



OR:

The sucrose gap technique is used to create a
conduction block Nerve block or regional nerve blockade is any deliberate interruption of signals traveling along a nerve, often for the purpose of pain relief. Local anesthetic nerve block (sometimes referred to as simply "nerve block") is a short-term block, u ...
in nerve or muscle fibers. A high concentration of sucrose is applied to the extracellular space, which prevents the correct opening and closing of
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
and
potassium channel Potassium channels are the most widely distributed type of ion channel found in virtually all organisms. They form potassium-selective pores that span cell membranes. Potassium channels are found in most cell types and control a wide variety of c ...
s, increasing resistance between two groups of cells. It was originally developed by Robert Stämpfli for recording action potentials in nerve fibers, and is particularly useful for measuring irreversible or highly variable pharmacological modifications of channel properties since untreated regions of membrane can be pulled into the node between the sucrose regions.


History

The sucrose gap technique was first introduced by in 1954 who worked with
Alan Hodgkin Sir Alan Lloyd Hodgkin (5 February 1914 – 20 December 1998) was an English physiologist and biophysicist who shared the 1963 Nobel Prize in Physiology or Medicine with Andrew Huxley and John Eccles. Early life and education Hodgkin was bo ...
and
Andrew Huxley Sir Andrew Fielding Huxley (22 November 191730 May 2012) was an English physiologist and biophysicist. He was born into the prominent Huxley family. After leaving Westminster School in central London, he went to Trinity College, Cambridge ...
between 1947 and 1949. From his research, Stämpfli determined that currents moving along nerve fibers can be measured more easily when there is a gap of high resistance that reduces the amount of conducting medium outside of the cell. Stämpfli observed many problems with the ways that were being used to measure membrane potential at the time. He experimented with a new method that he called the sucrose gap. The method was used to study
action potentials An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells ...
in nerve fibers. Huxley observed Stämpfli's method and agreed that it was useful and produced very few errors. The sucrose gap technique also contributed to Stämpfli's and Huxley's discovery of inhibitory junction potentials. Since its introduction, many improvements and alterations have been made to the technique. One modification of the single sucrose gap method was introduced by C.H.V. Hoyle in 1987. The double sucrose gap technique, which was first used by Rougier, Vassort, and Stämpfli to study cardiac cells in 1968, was improved by C. Leoty and J. Alix who introduced an improved chamber for the double sucrose gap with
voltage clamp The voltage clamp is an experimental method used by electrophysiologists to measure the ion currents through the membranes of excitable cells, such as neurons, while holding the membrane voltage at a set level. A basic voltage clamp will itera ...
technique which eliminated external resistance from the node.


Method

A classic sucrose gap technique is typically set up with three chambers that each contain a segment of the
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. ...
or cells that are being studied. The test chamber contains a physiological solution, such as Krebs or
Ringer's solution Ringer's solution is a solution of several salts dissolved in water for the purpose of creating an isotonic solution relative to the body fluids of an animal. Ringer's solution typically contains sodium chloride, potassium chloride, calcium chl ...
, which mimics the ion concentration and osmotic pressure of the cell's natural environment. Test drugs can also be added to this chamber to study the effect that they have on cellular function. Ag-AgCl or platinum wire electrodes are generally used for stimulating the cells in the test solution. The sucrose chamber (or gap) is the middle chamber that separates the two other chambers, or sections of the nerve fiber or cells. This chamber contains an isotonic sucrose solution of a high specific resistance. Specific resistance describes the ability of a material or solution to oppose electric current, so a sucrose solution of a high specific resistance is effective in electrically isolating the three chambers. The third chamber usually contains a KCl solution that mimics the intracellular solution. The high
potassium Potassium is the chemical element with the symbol K (from Neo-Latin ''kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmosph ...
concentration in this chamber depolarizes the immersed segment of the tissue, allowing potential differences to be measured between the two segments separated by the sucrose gap. Vaseline, silicon grease, or a silicon-vaseline mixture is used to seal the nerve or tissue in position and prevent
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemica ...
of solution between the chambers. A pair of agar-bridged Ag-AgCl electrodes are placed in the test and KCl chambers to record the changes in membrane potential.


Single Sucrose Gap Technique

The single sucrose gap technique is used to study the electrical activity of cells. It is useful in the study of small nerve fibers and electrically connected cells such as smooth muscle cell. The method creates
conduction block Nerve block or regional nerve blockade is any deliberate interruption of signals traveling along a nerve, often for the purpose of pain relief. Local anesthetic nerve block (sometimes referred to as simply "nerve block") is a short-term block, u ...
in a nerve or muscle fiber by introducing a gap of high resistance between two groups of cells. A nonionic sucrose solution is used to increase resistance in the extracellular area between the two groups. This allows all of the current originating on one side of the gap to flow to the other side only through the interior of the nerve or tissue. Changes in electrical potential between the two groups relative to each other can be measured and recorded.


Double Sucrose Gap Technique

Alterations have been made to the single sucrose gap technique. One modification is called the double sucrose gap technique. This is used to measure resistance and membrane potential at the same time. Two chambers containing sucrose solutions are used to isolate a node of the nerve or tissue, which is immersed in a physiological solution. The two ends of the nerve or tissue are depolarized by a solution rich in potassium ions. The potential differences between the node, or test chamber, and one of the potassium-rich chambers can be measured, while the potential in the node can be modified by the current degenerated between the other potassium-rich chamber and the node. The information that is obtained can be used, along with the Ohm's law equation, to determine the membrane resistance of the cells within the node. The double sucrose gap can be used as a voltage clamp as well. When used with proper electronics, the double sucrose gap can be used to voltage clamp the membrane potential of the nerve or tissue segment contained in the test chamber.


Advantages and limitations


Advantages

The sucrose gap technique allows ion currents to be measured in multicellular tissues. Although
voltage clamp The voltage clamp is an experimental method used by electrophysiologists to measure the ion currents through the membranes of excitable cells, such as neurons, while holding the membrane voltage at a set level. A basic voltage clamp will itera ...
and
patch clamp The patch clamp technique is a laboratory technique in electrophysiology used to study ionic currents in individual isolated living cells, tissue sections, or patches of cell membrane. The technique is especially useful in the study of excita ...
methods are also effective in studying the functions of neurons, the sucrose gap technique is easier to perform and less expensive. Furthermore, the sucrose gap technique can provide stable recordings from small cells, such as nerve fibers or smooth muscle cells, for an extended period of time. It is very complicated, however, to achieve similar measurements with intracellular or patch-clamp electrodes because they can physically damage small axons or cells. Because of the arrangement of the sucrose gap chambers, the technique of stimulating the neuron or cell is simple and reliable. This method is also useful in studying the changes in membrane potential in response to different pharmacologically active agents, which can be introduced in the test chamber.


Limitations

A major limitation of the single sucrose gap is that it cannot determine the real values of the membrane potential and action potential amplitudes. It can only measure the relative changes in the potential between the regions separated by the sucrose solution because of the shunting effect. Double sucrose gap, however, can measure the membrane potential and resistance. Another limitation is that membrane potentials cannot be obtained from tissues where there is no electrical coupling between the cells (i.e. when the spatial constant, λ, is close to zero). Also, the sucrose solution, which has a low ionic concentration, can deplete the exposed cells of vital intracellular ions such as sodium and potassium, which can affect their viability. This can cause the membrane to become hyperpolarized and affect the conduction of action potentials along the cell. Despite these limitations, the many advantages of the sucrose gap method makes it a useful and reliable technique in neuroscience studies.


Applications

The sucrose-gap technique is used to record membrane activities from
myelinated Myelin is a lipid-rich material that surrounds nerve cell axons (the nervous system's "wires") to insulate them and increase the rate at which electrical impulses (called action potentials) are passed along the axon. The myelinated axon can be l ...
nerves, unmyelinated nerves, smooth muscle, and cardiac muscle. Along with microelectrode methods and patch-clamp methods, the sucrose gap is often used by experimenters to study the nervous system and can serve as an effective method to investigate the effects of drugs on
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. ...
activities. Studies on the effects of
choline Choline is an essential nutrient for humans and many other animals. Choline occurs as a cation that forms various salts (X− in the depicted formula is an undefined counteranion). Humans are capable of some ''de novo synthesis'' of choline but r ...
, acetylcholine, and
carbachol Carbachol, also known as carbamylcholine and sold under the brand name Miostat among others, is a cholinomimetic drug that binds and activates acetylcholine receptors. Thus it is classified as a cholinergic agonist. It is primarily used for va ...
on the resting potentials of the superior cervical ganglion in rabbits were conducted using the sucrose-gap method. The recording of membrane potentials in the superior cervical ganglion was made simple with the sucrose-gap method as it allows for separated depolarizing of the ganglion and the internal carotid nerve. The sucrose-gap technique has been applied to determine the relation between external potassium concentration and the membrane potential of smooth muscle cells using guinea-pig ureters. It has also been used to rectify inaccurate membrane potential measurements resulting from leakage currents through the membrane and extracellular resistance. Correction of an inaccurate membrane current reading is also possible through utilization of the sucrose-gap method. Developments in the sucrose-gap method have led to double sucrose-gap techniques. A double sucrose-gap is generally advantageous when used to electrically isolate smaller segments of nerve fibers than would be possible with a single sucrose-gap, as was done in studies on membrane potentials and currents in sheep and calf ventricular muscle fibers. The double sucrose-gap technique is also utilized over the single sucrose-gap to study cardiac muscle, where it allows for clearer resolution of early currents, those occurring within the first 10-100 milliseconds of depolarization.


References

{{reflist Medical tests Neurophysiology